Matching is one of the most widely used study designs for adjusting for measured confounders in observational studies. However, unmeasured confounding may exist and cannot be removed by matching. Therefore, a sensitivity analysis is typically needed to assess a causal conclusion's sensitivity to unmeasured confounding. Sensitivity analysis frameworks for binary exposures have been well-established for various matching designs and are commonly used in various studies. However, unlike the binary exposure case, there still lacks valid and general sensitivity analysis methods for continuous exposures, except in some special cases such as pair matching. To fill this gap in the binary outcome case, we develop a sensitivity analysis framework for general matching designs with continuous exposures and binary outcomes. First, we use probabilistic lattice theory to show our sensitivity analysis approach is finite-population-exact under Fisher's sharp null. Second, we prove a novel design sensitivity formula as a powerful tool for asymptotically evaluating the performance of our sensitivity analysis approach. Third, to allow effect heterogeneity with binary outcomes, we introduce a framework for conducting asymptotically exact inference and sensitivity analysis on generalized attributable effects with binary outcomes via mixed-integer programming. Fourth, for the continuous outcomes case, we show that conducting an asymptotically exact sensitivity analysis in matched observational studies when both the exposures and outcomes are continuous is generally NP-hard, except in some special cases such as pair matching. As a real data application, we apply our new methods to study the effect of early-life lead exposure on juvenile delinquency. We also develop a publicly available R package for implementation of the methods in this work.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2023年1月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员