Quantum technologies require methods for preparing and manipulating entangled multiparticle states. However, the problem of determining whether a given quantum state is entangled or separable is known to be an NP-hard problem in general, and even the task of detecting entanglement breakdown for a given class of quantum states is difficult. In this work, we develop an approach for revealing entanglement breakdown using a machine learning technique, which is known as 'learning by confusion'. We consider a family of quantum states, which is parameterized such that there is a single critical value dividing states within this family into separate and entangled. We demonstrate the 'learning by confusion' scheme allows us to determine the critical value. Specifically, we study the performance of the method for the two-qubit, two-qutrit, and two-ququart entangled state. In addition, we investigate the properties of the local depolarization and the generalized amplitude damping channel in the framework of the confusion scheme. Within our approach and setting the parameterization of special trajectories, we obtain an entanglement-breakdown 'phase diagram' of a quantum channel, which indicates regions of entangled (separable) states and the entanglement-breakdown region. Then we extend the way of using the 'learning by confusion' scheme for recognizing whether an arbitrary given state is entangled or separable. We show that the developed method provides correct answers for a variety of states, including entangled states with positive partial transpose. We also present a more practical version of the method, which is suitable for studying entanglement breakdown in noisy intermediate-scale quantum devices. We demonstrate its performance using an available cloud-based IBM quantum processor.
翻译:量子技术需要准备和操控纠缠的多质状态的方法。 然而, 确定特定量子状态是纠缠的还是分解的, 这个问题一般已知是一个NP- 硬的问题, 甚至检测某类量子状态的纠缠分解的任务也很困难。 在这项工作中, 我们开发一种方法, 使用机器的学习技术来揭示纠缠的分解。 这是一种被称为“ 以混乱方式学习 ” 的方法。 我们考虑的是一组量子状态, 它是一个参数化的分解, 从而使得这个家族内部的状态分解成一个单一的临界值。 我们展示了“ 以混乱方式学习” 的分解方法, 具体地说, 我们研究的是两个QQ、 2Q和 2Q 连接状态的方法的分解。 此外, 我们研究当地分解的分解和宽化的分解渠道的特性, 我们用一个分解的分解的分解的分解方式来显示一个分解的分解的分解的状态, 我们用一个分解的分解的分解的分解的分解方法来显示一个分解的分解的分解的分解的分解区域。 我们用一个分解的分解的分解法的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解方法,,,, 向的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解区域是分解的分解的分解的分解的分解过程的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解过程的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的分解的