In this article, we present reduced-order modeling for Koopman operators of nonautonomous dynamic systems in multiscale media. Koopman operators can transform the nonlinear dynamic systems into linear systems through acting on observation function spaces. Different from the case of autonomous dynamic systems, the Koopman operator family of nonautonomous dynamic systems significantly depend on a time pair. In order to effectively estimate the time-dependent Koopman operators, a moving time window is used to decompose the snapshot data, and the extended dynamic mode decomposition method is applied to computing the Koopman operators in each local temporal domain. To accurately construct the models of dynamic systems in multiscale media, we may use high spatial dimension of observation data. It is challenging to compute the Koopman operators using the high dimensional data. Thus, the strategy of reduced-order modeling is proposed to treat the difficulty. The proposed reduced-order modeling includes two stages: offline stage and online stage. In offline stage, a block-wise low rank decomposition is used to reduce the spatial dimension of initial snapshot data. For the nonautonomous dynamic systems, real-time observation data may be required to update the Koopman operators. An online reduced-order modeling is proposed to correct the offline reduced-order modeling.Three methods are developed for the online reduced-order modeling: fully online, semi-online and adaptive online. The adaptive online method automatically selects the fully online or semi-online and can achieve a good trade-off between modeling accuracy and efficiency. A few numerical examples are presented to illustrate the performance of the different reduced-order modeling methods.
翻译:在本篇文章中,我们为多级媒体中非自主动态系统的Koopman操作员展示了降序模型。 Koopman操作员可以通过在观测功能空间上采取行动, 将非线性动态系统转换成线性系统。 不同于自动动态系统的情况, Koopman操作员对非自主动态系统大家族的操作员大为依赖时间配对。 为了有效估计时间依赖的Koopman操作员, 使用移动时间窗口来分解快照数据, 并且使用扩展动态模式的半解剖方法来计算每个本地时间域的Koopman操作员。 要准确地在多级媒体中构建动态系统的模型, 我们可能会使用高空间的观测数据。 使用高度数据来计算Koopman操作员的高度空间层面是困难的。 因此, 提出减序模型战略来应对困难。 拟议的减序模型包括两个阶段: 离线阶段和在线阶段。 离线性低级半线性分解法用于减少初始光学数据的空间层面。 对于非自主模型系统来说, 实时模型和在线测算操作员的在线测算数据可能需要降低在线测算方法。 降低在线测算方法 。 。 降低在线测线性测算方法 降低在线测算方法 降低在线测算方法 正在更新。 降低了在线测算方法 降低了在线测算方法 。 降低了在线测算方法 降低了在线测算方法 。