As a technical sub-field of artificial intelligence (AI), explainable AI (XAI) has produced a vast collection of algorithms in recent years. However, explainability is an inherently human-centric property and the field is starting to embrace inter-disciplinary perspectives and human-centered approaches. As researchers and practitioners begin to leverage XAI algorithms to build XAI applications, explainability has moved beyond a demand by data scientists or researchers to comprehend the models they are developing, to become an essential requirement for people to trust and adopt AI deployed in numerous domains. Human-computer interaction (HCI) research and user experience (UX) design in this area are therefore increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey recent HCI work that takes human-centered approaches to design, evaluate, provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they should play in shaping XAI technologies: to drive technical choices by understanding users' explainability needs, to uncover pitfalls of existing XAI methods through empirical studies and inform new methods, and to provide conceptual frameworks for human-compatible XAI.


翻译:作为人工智能(AI)的一个技术分支领域,可解释的AI(XAI)近年来产生了大量的算法,然而,可解释性是一个固有的以人为中心的属性,该领域开始包括跨学科观点和以人为中心的方法。随着研究人员和从业人员开始利用XAI算法来建立XAI应用,可解释性已经超越了数据科学家或研究人员对了解他们所开发模型的需求,成为人们信任和采用在多个领域部署的AI的基本要求。因此,这个领域的人类-计算机互动(HCI)研究和用户经验设计越来越重要。在这个章节中,我们首先对XAI算法的技术背景进行高层次的概述,然后有选择地调查最近以人为中心的方法设计、评价、为XAI提供概念和方法工具的HCI工作。我们询问“以人为中心的方法对XAI做什么?”我们问“以人为中心的方法为XAI”的问题,并强调他们在塑造XAI技术时应该发挥的三项作用:通过理解用户的解释需要来推动技术选择,通过经验性研究为XAI提供新的方法,为XAI提供新的方法,为XAI提供新的比较性框架提供新的方法。

1
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
14+阅读 · 2020年9月1日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员