As a technical sub-field of artificial intelligence (AI), explainable AI (XAI) has produced a vast collection of algorithms in recent years. However, explainability is an inherently human-centric property and the field is starting to embrace inter-disciplinary perspectives and human-centered approaches. As researchers and practitioners begin to leverage XAI algorithms to build XAI applications, explainability has moved beyond a demand by data scientists or researchers to comprehend the models they are developing, to become an essential requirement for people to trust and adopt AI deployed in numerous domains. Human-computer interaction (HCI) research and user experience (UX) design in this area are therefore increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey recent HCI work that takes human-centered approaches to design, evaluate, provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they should play in shaping XAI technologies: to drive technical choices by understanding users' explainability needs, to uncover pitfalls of existing XAI methods through empirical studies and inform new methods, and to provide conceptual frameworks for human-compatible XAI.
翻译:作为人工智能(AI)的一个技术分支领域,可解释的AI(XAI)近年来产生了大量的算法,然而,可解释性是一个固有的以人为中心的属性,该领域开始包括跨学科观点和以人为中心的方法。随着研究人员和从业人员开始利用XAI算法来建立XAI应用,可解释性已经超越了数据科学家或研究人员对了解他们所开发模型的需求,成为人们信任和采用在多个领域部署的AI的基本要求。因此,这个领域的人类-计算机互动(HCI)研究和用户经验设计越来越重要。在这个章节中,我们首先对XAI算法的技术背景进行高层次的概述,然后有选择地调查最近以人为中心的方法设计、评价、为XAI提供概念和方法工具的HCI工作。我们询问“以人为中心的方法对XAI做什么?”我们问“以人为中心的方法为XAI”的问题,并强调他们在塑造XAI技术时应该发挥的三项作用:通过理解用户的解释需要来推动技术选择,通过经验性研究为XAI提供新的方法,为XAI提供新的方法,为XAI提供新的比较性框架提供新的方法。