In this paper, we propose a novel privacy-preserving machine learning scheme with encrypted images, called EtC (Encryption-then-Compression) images. Using machine learning algorithms in cloud environments has been spreading in many fields. However, there are serious issues with it for end users, due to semi-trusted cloud providers. Accordingly, we propose using EtC images, which have been proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is considered under the use of z-score normalization. It is demonstrated that the use of EtC images allows us not only to protect visual information of images, but also to preserve both the Euclidean distance and the inner product between vectors. In addition, dimensionality reduction is shown to can be applied to EtC images for fast and accurate matching. In an experiment, the proposed scheme is applied to a facial recognition algorithm with classifiers for confirming the effectiveness of the scheme under the use of support vector machine (SVM) with the kernel trick.
翻译:在本文中, 我们提出一个新的隐私保护机器学习方案, 使用加密图像, 称为 EtC( 加密- 现压缩) 图像。 使用云环境中的机器学习算法已经在很多领域扩散。 但是, 由于半信任的云提供商, 终端用户面临严重的问题 。 因此, 我们提议使用 EtC 图像, 这是为使用 JPEG 压缩的 EtC 系统提议的 。 在本文中, 在 z- score 正常化 下, 考虑了 EtC 图像的新属性 。 事实证明, 使用 EtC 图像不仅可以保护图像的视觉信息, 还可以保护 Euclidean 距离和矢量之间的内产物 。 此外, 维度降低可以应用到 EtC 图像, 以便快速和准确匹配 。 在一项实验中, 将拟议方案应用到一个与 Galiers 的面部识别算法, 以证实在使用支持矢量机( SVM) 和内核操纵 下的计划的有效性 。