Deep learning research has generated widespread interest leading to emergence of a large variety of technological innovations and applications. As significant proportion of deep learning research focuses on vision based applications, there exists a potential for using some of these techniques to enable low-power portable health-care diagnostic support solutions. In this paper, we propose an embedded-hardware-based implementation of microscopy diagnostic support system for PoC case study on: (a) Malaria in thick blood smears, (b) Tuberculosis in sputum samples, and (c) Intestinal parasite infection in stool samples. We use a Squeeze-Net based model to reduce the network size and computation time. We also utilize the Trained Quantization technique to further reduce memory footprint of the learned models. This enables microscopy-based detection of pathogens that classifies with laboratory expert level accuracy as a standalone embedded hardware platform. The proposed implementation is 6x more power-efficient compared to conventional CPU-based implementation and has an inference time of $\sim$ 3 ms/sample.
翻译:深层学习研究已引起广泛的兴趣,导致大量技术创新和应用的出现。由于深深层学习研究中很大一部分侧重于基于愿景的应用,因此有可能使用其中一些技术,使低功率便携式保健诊断支持解决方案得以实现。在本文件中,我们提议采用嵌入式硬件实施显微镜诊断支持系统,用于POC的案例研究:(a) 厚血涂片中的疟疾,(b) 人造样本中的肺结核,以及(c) 工具样本中的不试验寄生虫感染。我们使用基于挤压网络的模型来减少网络规模和计算时间。我们还利用经过培训的定量技术来进一步减少所学模型的记忆足迹。这有利于以实验室专家级精度分类为独立嵌入式硬件平台的基于显微镜的病原体检测。拟议采用的方法比常规CPU的安装效率高6x,而且推算时间为3 ms/sample。