The JPEG standard is widely used in different image processing applications. One of the main components of the JPEG standard is the quantisation table (QT) since it plays a vital role in the image properties such as image quality and file size. In recent years, several efforts based on population-based metaheuristic (PBMH) algorithms have been performed to find the proper QT(s) for a specific image, although they do not take into consideration the user opinion in advance. Take an android developer as an example, who prefers a small-size image, while the optimisation process results in a high-quality image, leading to a huge file size. Another pitfall of the current works is a lack of comprehensive coverage, meaning that the QT(s) can not provide all possible combinations of file size and quality. Therefore, this paper aims to propose three distinct contributions. First, to include the user opinion in the compression process, the file size of the output image can be controlled by a user in advance. To this end, we propose a novel objective function for population-based JPEG image compression. Second, to tackle the lack of comprehensive coverage, we suggest a novel representation. Our proposed representation can not only provide more comprehensive coverage but also find the proper value for the quality factor for a specific image without any background knowledge. Both changes in representation and objective function are independent of the search strategies and can be used with any type of population-based metaheuristic (PBMH) algorithm. Therefore, as the third contribution, we also provide a comprehensive benchmark on 22 state-of-the-art and recently-introduced PBMH algorithms. Our extensive experiments on different benchmark images and in terms of different criteria show that our novel formulation for JPEG image compression can work effectively.


翻译:摘要:JPEG标准在不同的图像处理应用中被广泛使用。其中JPEG标准的主要组成部分是量化表(QT),因为它对图像质量和文件大小等图像属性起着至关重要的作用。近年来,基于群体搜索(PBMH)算法的工作已经进行了多次,以寻找特定图像的适当量化表(QT)组合,但是它们没有提前考虑用户意见。以Android开发人员为例,他们更喜欢较小的图像,但优化过程结果是高质量的图像,导致文件大小巨大。当前工作的另一个缺点是缺乏全面覆盖,即QT(s)不能提供所有可能的文件大小和质量组合。因此,本文旨在提出三个不同的贡献。首先,为了将用户意见纳入压缩过程中,输出图像的文件大小可以由用户提前控制。为此,我们针对基于群体搜索(PBMH)的JPEG图像压缩提出了一种新颖的目标函数。其次,为了解决全面覆盖的缺乏,我们建议使用一种新的表示方法。我们提出的表示方法不仅可以提供更全面的覆盖范围,而且可以在没有任何背景知识的情况下找到特定图像的质量因子的正确值。表示和目标函数的变化与搜索策略无关,可以与任何类型的基于群体搜索(PBMH)算法一起使用。因此,作为第三个贡献,我们还提供了22种最先进和最近引入的PBMH算法的综合基准。我们在不同的基准图像和不同的标准下进行了广泛的实验,证明我们对JPEG图像压缩的新型公式可以有效地工作。

0
下载
关闭预览

相关内容

互联网
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
31+阅读 · 2022年1月27日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
12+阅读 · 2021年10月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
无服务器应用程序开发的最新趋势
InfoQ
0+阅读 · 2022年6月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
实战 | 用Python做图像处理(三)
七月在线实验室
15+阅读 · 2018年5月29日
实战 | 用Python做图像处理(一)
七月在线实验室
25+阅读 · 2018年5月23日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关VIP内容
相关资讯
无服务器应用程序开发的最新趋势
InfoQ
0+阅读 · 2022年6月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
实战 | 用Python做图像处理(三)
七月在线实验室
15+阅读 · 2018年5月29日
实战 | 用Python做图像处理(一)
七月在线实验室
25+阅读 · 2018年5月23日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员