We present MG-Nav (Memory-Guided Navigation), a dual-scale framework for zero-shot visual navigation that unifies global memory-guided planning with local geometry-enhanced control. At its core is the Sparse Spatial Memory Graph (SMG), a compact, region-centric memory where each node aggregates multi-view keyframe and object semantics, capturing both appearance and spatial structure while preserving viewpoint diversity. At the global level, the agent is localized on SMG and a goal-conditioned node path is planned via an image-to-instance hybrid retrieval, producing a sequence of reachable waypoints for long-horizon guidance. At the local level, a navigation foundation policy executes these waypoints in point-goal mode with obstacle-aware control, and switches to image-goal mode when navigating from the final node towards the visual target. To further enhance viewpoint alignment and goal recognition, we introduce VGGT-adapter, a lightweight geometric module built on the pre-trained VGGT model, which aligns observation and goal features in a shared 3D-aware space. MG-Nav operates global planning and local control at different frequencies, using periodic re-localization to correct errors. Experiments on HM3D Instance-Image-Goal and MP3D Image-Goal benchmarks demonstrate that MG-Nav achieves state-of-the-art zero-shot performance and remains robust under dynamic rearrangements and unseen scene conditions.
翻译:本文提出MG-Nav(记忆引导导航),一种用于零样本视觉导航的双尺度框架,将全局记忆引导规划与局部几何增强控制相统一。其核心是稀疏空间记忆图(SMG),一种紧凑的、以区域为中心的记忆结构,其中每个节点聚合多视角关键帧和物体语义,同时捕获外观和空间结构,并保持视角多样性。在全局层面,智能体在SMG上定位,并通过图像到实例的混合检索规划目标条件节点路径,生成一系列可达航点以实现长时程引导。在局部层面,一个导航基础策略以点目标模式执行这些航点,并采用障碍物感知控制;当从最终节点向视觉目标导航时,切换至图像目标模式。为进一步增强视角对齐和目标识别,我们引入VGGT适配器,这是一个基于预训练VGGT模型构建的轻量级几何模块,可在共享的3D感知空间中对齐观测与目标特征。MG-Nav以不同频率运行全局规划和局部控制,并利用周期性重定位以修正误差。在HM3D实例-图像-目标和MP3D图像-目标基准测试上的实验表明,MG-Nav实现了最先进的零样本性能,并在动态重排和未见场景条件下保持鲁棒性。