Constructing a Pseudo Random Function (PRF) is a fundamental problem in cryptology. Such a construction, implemented by truncating the last $m$ bits of permutations of $\{0, 1\}^{n}$ was suggested by Hall et al. (1998). They conjectured that the distinguishing advantage of an adversary with $q$ queries, ${\bf Adv}_{n, m} (q)$, is small if $q = o (2^{(n+m)/2})$, established an upper bound on ${\bf Adv}_{n, m} (q)$ that confirms the conjecture for $m < n/7$, and also declared a general lower bound ${\bf Adv}_{n,m}(q)=\Omega(q^2/2^{n+m})$. The conjecture was essentially confirmed by Bellare and Impagliazzo (1999). Nevertheless, the problem of {\em estimating} ${\bf Adv}_{n, m} (q)$ remained open. Combining the trivial bound $1$, the birthday bound, and a result of Stam (1978) leads to the upper bound \begin{equation*} {\bf Adv}_{n,m}(q) = O\left(\min\left\{\frac{q(q-1)}{2^n},\,\frac{q}{2^{\frac{n+m}{2}}},\,1\right\}\right). \end{equation*} In this paper we show that this upper bound is tight for every $0\leq m<n$ and any $q$. This, in turn, verifies that the converse to the conjecture of Hall et al. is also correct, i.e., that ${\bf Adv}_{n, m} (q)$ is negligible only for $q = o (2^{(n+m)/2})$.
翻译:构建一个 Peudo Rands 函数 (PRF) 是加密方面的一个基本问题 。 此构造由 Hall 等人 (1998 ) 和 Hall 等人 (1998 ) 提出, 由 $0, 1\ n} 美元执行的最后一个美元位数执行 。 他们推测, 以 $q( $) 查询, $_bf Adv ⁇ n, m} (q) 美元, 如果 $ = o ( 2 ⁇ ( n+m) /} 美元), 在 $( bf) Adv} 、 m} (q) 美元上一个上限, 美元= 0\\ 美元, 美元 美元 美元, 美元= 美元= 美元=qqqn, m} (q) 他们推测, 以 $qqqqqqq@qr=q 查询, 美元, 美元=qqqurearequefreare, 基本由 Bella 和 ligude O.