Simultaneous Speech Translation (SimulST) enables real-time cross-lingual communication by jointly optimizing speech recognition and machine translation under strict latency constraints. Existing systems struggle to balance translation quality, latency, and semantic coherence, particularly in multilingual many-to-many scenarios where divergent read and write policies hinder unified strategy learning. In this paper, we present SimulMEGA (Simultaneous Generation by Mixture-of-Experts Gating), an unsupervised policy learning framework that combines prefix-based training with a Mixture-of-Experts refiner to learn effective read and write decisions in an implicit manner, without adding inference-time overhead. Our design requires only minimal modifications to standard transformer architectures and generalizes across both speech-to-text and text-to-speech streaming tasks. Through comprehensive evaluation on six language pairs, our 500M parameter speech-to-text model outperforms the Seamless baseline, achieving under 7 percent BLEU degradation at 1.5 seconds average lag and under 3 percent at 3 seconds. We further demonstrate the versatility of SimulMEGA by extending it to streaming TTS with a unidirectional backbone, yielding superior latency quality tradeoffs.


翻译:同步语音翻译(SimulST)通过在严格延迟约束下联合优化语音识别与机器翻译,实现实时跨语言交流。现有系统难以平衡翻译质量、延迟与语义连贯性,尤其在多语言多对多场景中,读写策略的差异阻碍了统一策略的学习。本文提出SimulMEGA(基于专家混合门控的同步生成),一种无监督策略学习框架,结合基于前缀的训练与专家混合优化器,以隐式方式学习有效的读写决策,且不增加推理时开销。该设计仅需对标准Transformer架构进行最小修改,并可泛化至语音到文本及文本到语音流式任务。通过在六对语言上的全面评估,我们的5亿参数语音到文本模型优于Seamless基线,在1.5秒平均延迟下实现低于7%的BLEU下降,在3秒延迟下低于3%。我们进一步通过将SimulMEGA扩展至基于单向骨干网络的流式文本到语音任务,展示了其多功能性,获得了更优的延迟-质量权衡。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员