Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using online users' Internet search data to forecast unemployment initial claims weeks into the future, which provides timely insights into the direction of the economy. To this end, we present a novel method PRISM (Penalized Regression with Inferred Seasonality Module), which uses publicly available online search data from Google. PRISM is a semi-parametric method, motivated by a general state-space formulation, and employs nonparametric seasonal decomposition and penalized regression. For forecasting unemployment initial claims, PRISM outperforms all previously available methods, including forecasting during the 2008-2009 financial crisis period and near-future forecasting during the COVID-19 pandemic period, when unemployment initial claims both rose rapidly. The timely and accurate unemployment forecasts by PRISM could aid government agencies and financial institutions to assess the economic trend and make well-informed decisions, especially in the face of economic turbulence.
翻译:互联网产生的大数据为预测分析提供了巨大的潜力。 在这里,我们侧重于使用在线用户的互联网搜索数据来预测未来几星期的失业初步索赔,这为及时了解经济方向提供了及时的洞察力。 为此,我们介绍了一种创新方法PRISM(与季节性变化模块一起出现的衰退现象),该方法使用来自谷歌的公开在线搜索数据。 PRISM是一种半参数方法,受州空间通用配制的驱动,并采用非对称季节性分解和受处罚的回归。在预测失业初步索赔方面,PRISM超越了以前所有可用的方法,包括2008-2009年金融危机期间的预测和在COVID-19大流行期间的近未来预测,当时失业初步索赔都迅速上升。 PRISM的及时和准确的失业预测可以帮助政府机构和金融机构评估经济趋势并做出知情的决定,特别是在经济动荡的情况下。