In this work, we introduce the pattern-domain pilot design paradigm based on a "superposition of orthogonal-building-blocks" with significantly larger contention space to enhance the massive machine-type communications (mMTC) random access (RA) performance in massive multiple-input multiple-output (MIMO) systems.Specifically, the pattern-domain pilot is constructed based on the superposition of $L$ cyclically-shifted Zadoff-Chu (ZC) sequences. The pattern-domain pilots exhibit zero correlation values between non-colliding patterns from the same root and low correlation values between patterns from different roots. The increased contention space, i.e., from N to $\binom{N}{L}$, where $\binom{N}{L}$ denotes the number of all L-combinations of a set N, and low correlation valueslead to a significantly lower pilot collision probability without compromising excessively on channel estimation performance for mMTC RA in massive MIMO systems.We present the framework and analysis of the RA success probability of the pattern-domain based scheme with massive MIMO systems.Numerical results demonstrate that the proposed pattern division random access (PDRA) scheme achieves an appreciable performance gain over the conventional one,while preserving the existing physical layer virtually unchanged. The extension of the "superposition of orthogonal-building-blocks" scheme to "superposition of quasi-orthogonal-building-blocks" is straightforward.


翻译:本文提出了一种基于"正交构建块叠加"的模式域导频设计范式,该范式通过显著扩大竞争空间来提升大规模多输入多输出(MIMO)系统中大规模机器类通信(mMTC)的随机接入性能。具体而言,模式域导频由$L$个循环移位Zadoff-Chu(ZC)序列叠加构建而成。来自同一根序列的非冲突模式间呈现零相关值,而不同根序列产生的模式间则保持低相关值。竞争空间的显著扩大(即从N增至$\binom{N}{L}$,其中$\binom{N}{L}$表示集合N中所有L组合的数量)以及低相关特性,使得在大规模MIMO系统的mMTC随机接入中,导频碰撞概率大幅降低的同时未过度牺牲信道估计性能。我们提出了基于模式域的随机接入方案在大规模MIMO系统中的理论框架及接入成功率分析。数值结果表明,所提出的模式分割随机接入(PDRA)方案在保持现有物理层基本不变的前提下,较传统方案获得了显著性能增益。将"正交构建块叠加"方案扩展至"准正交构建块叠加"的方案具有直接可行性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员