Let $\{\Lambda_n=\{\lambda_{1,n},\ldots,\lambda_{d_n,n}\}\}_n$ be a sequence of finite multisets of real numbers such that $d_n\to\infty$ as $n\to\infty$, and let $f:\Omega\subset\mathbb R^d\to\mathbb R$ be a Lebesgue measurable function defined on a domain $\Omega$ with $0<\mu_d(\Omega)<\infty$, where $\mu_d$ is the Lebesgue measure in $\mathbb R^d$. We say that $\{\Lambda_n\}_n$ has an asymptotic distribution described by $f$, and we write $\{\Lambda_n\}_n\sim f$, if \[ \lim_{n\to\infty}\frac1{d_n}\sum_{i=1}^{d_n}F(\lambda_{i,n})=\frac1{\mu_d(\Omega)}\int_\Omega F(f({\boldsymbol x})){\rm d}{\boldsymbol x}\qquad\qquad(*) \] for every continuous function $F$ with bounded support. If $\Lambda_n$ is the spectrum of a matrix $A_n$, we say that $\{A_n\}_n$ has an asymptotic spectral distribution described by $f$ and we write $\{A_n\}_n\sim_\lambda f$. In the case where $d=1$, $\Omega$~is a bounded interval, $\Lambda_n\subseteq f(\Omega)$ for all $n$, and $f$ satisfies suitable conditions, Bogoya, B\"ottcher, Grudsky, and Maximenko proved that the asymptotic distribution (*) implies the uniform convergence to $0$ of the difference between the properly sorted vector $[\lambda_{1,n},\ldots,\lambda_{d_n,n}]$ and the vector of samples $[f(x_{1,n}),\ldots,f(x_{d_n,n})]$, i.e., \[ \lim_{n\to\infty}\,\max_{i=1,\ldots,d_n}|f(x_{i,n})-\lambda_{\tau_n(i),n}|=0, \qquad\qquad(**) \] where $x_{1,n},\ldots,x_{d_n,n}$ is a uniform grid in $\Omega$ and $\tau_n$ is the sorting permutation. We extend this result to the case where $d\ge1$ and $\Omega$ is a Peano--Jordan measurable set (i.e., a bounded set with $\mu_d(\partial\Omega)=0$). See the rest of the abstract in the manuscript.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】线性代数概论:计算、应用和理论,435页pdf
专知会员服务
59+阅读 · 2023年1月30日
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
专知会员服务
50+阅读 · 2021年6月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月23日
Arxiv
0+阅读 · 2023年10月20日
Arxiv
0+阅读 · 2023年10月20日
VIP会员
相关VIP内容
【干货书】线性代数概论:计算、应用和理论,435页pdf
专知会员服务
59+阅读 · 2023年1月30日
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
专知会员服务
50+阅读 · 2021年6月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
相关资讯
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员