Humans can identify objects following various spatial transformations such as scale and viewpoint. This extends to novel objects, after a single presentation at a single pose, sometimes referred to as online invariance. CNNs have been proposed as a compelling model of human vision, but their ability to identify objects across transformations is typically tested on held-out samples of trained categories after extensive data augmentation. This paper assesses whether standard CNNs can support human-like online invariance by training models to recognize images of synthetic 3D objects that undergo several transformations: rotation, scaling, translation, brightness, contrast, and viewpoint. Through the analysis of models' internal representations, we show that standard supervised CNNs trained on transformed objects can acquire strong invariances on novel classes even when trained with as few as 50 objects taken from 10 classes. This extended to a different dataset of photographs of real objects. We also show that these invariances can be acquired in a self-supervised way, through solving the same/different task. We suggest that this latter approach may be similar to how humans acquire invariances.


翻译:人类可以识别在各种空间变换(如规模和视角)之后的物体。 这可以扩展到新对象, 在以单一姿势(有时被称为在线变迁)进行单一展示后。 有线电视新闻网被提议为人类视觉的令人信服的模型,但是,在广泛数据增强后,他们识别变异对象的能力通常会通过训练有素的类别样本来测试。本文评估标准有线电视新闻网能否通过培训模型支持人种式的在线变异,通过培训模型来识别经过若干变异的合成三维对象的图像:旋转、缩放、翻译、亮度、对比和观点。通过分析模型的内部表现,我们显示在变异对象方面接受过训练的受监管的有线电视新闻网可以在小类中获取强烈的变异性,即使经过培训的有来自10个类的50个对象。这扩大到真实物体照片的不同数据集。我们还表明,这些变异性可以通过自我监督的方式,通过解决同样/不同的任务获得。 我们建议后一种方法可能与人类变异性如何获得相似。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
4+阅读 · 2019年4月3日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员