A distinctive feature of Doppler radar is the measurement of velocity in the radial direction for radar points. However, the missing tangential velocity component hampers object velocity estimation as well as temporal integration of radar sweeps in dynamic scenes. Recognizing that fusing camera with radar provides complementary information to radar, in this paper we present a closed-form solution for the point-wise, full-velocity estimate of Doppler returns using the corresponding optical flow from camera images. Additionally, we address the association problem between radar returns and camera images with a neural network that is trained to estimate radar-camera correspondences. Experimental results on the nuScenes dataset verify the validity of the method and show significant improvements over the state-of-the-art in velocity estimation and accumulation of radar points.
翻译:多普勒雷达的一个独特特征是测量雷达点的射线方向速度。然而,缺少的相近速度组件阻碍了物体速度估计以及动态场景雷达扫描的时间整合。认识到带雷达的引信照相机为雷达提供了补充信息,在本文件中我们提出了一个封闭式解决方案,用于利用相机图像相应的光学流来对多普勒返回进行点对点、全速估计。此外,我们处理雷达返回和相机图像与神经网络之间的联系问题,该神经网络受过训练,能够估计雷达-摄像头通信。核巡视数据集的实验结果验证了该方法的有效性,并显示在速度估计和雷达点积累方面对最新技术的显著改进。