Diffusion-based generative models have shown great potential for image synthesis, but there is a lack of research on the security and privacy risks they may pose. In this paper, we investigate the vulnerability of diffusion models to Membership Inference Attacks (MIAs), a common privacy concern. Our results indicate that existing MIAs designed for GANs or VAE are largely ineffective on diffusion models, either due to inapplicable scenarios (e.g., requiring the discriminator of GANs) or inappropriate assumptions (e.g., closer distances between synthetic images and member images). To address this gap, we propose Step-wise Error Comparing Membership Inference (SecMI), a black-box MIA that infers memberships by assessing the matching of forward process posterior estimation at each timestep. SecMI follows the common overfitting assumption in MIA where member samples normally have smaller estimation errors, compared with hold-out samples. We consider both the standard diffusion models, e.g., DDPM, and the text-to-image diffusion models, e.g., Stable Diffusion. Experimental results demonstrate that our methods precisely infer the membership with high confidence on both of the two scenarios across six different datasets


翻译:在本文中,我们调查了扩散模型对成员推断攻击(MIAs)的脆弱性,这是一个共同的隐私问题。我们的结果表明,为GANs或VAE设计的现有MIAs在扩散模型上基本上无效,原因有二,有二,二,三,四,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,五,七,七,五,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,七,八,八,七,七,七,七,七,七,八,七,七,八,七,七,八,七,七,七,七,七,七,七,七,七,七,七,七,七,六,六,五,六,六,六,五,六,十,六,十,六,一,六,一,六,六,六,一,六,一,六,六,六,六,一,六,六,六,六,六,七,七,六,六,六,六,六,七,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,一,一,六,六,六,六,六,六,六,一,六,六,六,六,六,六,六,六,六,六,一,六,六,六,六,六,一,六,六,六,一,一,六,六,六,六,六,六,六,六,一,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,六,一,一,一,一,六,六,一,一,一,一,一,

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Decentralized Adversarial Training over Graphs
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员