We present a novel offline-online method to mitigate the computational burden of the characterization of conditional beliefs in statistical learning. In the offline phase, the proposed method learns the joint law of the belief random variables and the observational random variables in the tensor-train (TT) format. In the online phase, it utilizes the resulting order-preserving conditional transport map to issue real-time characterization of the conditional beliefs given new observed information. Compared with the state-of-the-art normalizing flows techniques, the proposed method relies on function approximation and is equipped with thorough performance analysis. This also allows us to further extend the capability of transport maps in challenging problems with high-dimensional observations and high-dimensional belief variables. On the one hand, we present novel heuristics to reorder and/or reparametrize the variables to enhance the approximation power of TT. On the other, we integrate the TT-based transport maps and the parameter reordering/reparametrization into layered compositions to further improve the performance of the resulting transport maps. We demonstrate the efficiency of the proposed method on various statistical learning tasks in ordinary differential equations (ODEs) and partial differential equations (PDEs).
翻译:我们提出了一个新的离线在线方法,以减轻统计学习中对有条件信仰定性的计算负担; 在离线阶段,拟议方法学习信仰随机变量和高压列车(TT)格式的观测随机变量的联合法; 在在线阶段,使用由此产生的定序保留有条件运输图,发布附加条件信仰的实时定性,新观察到的信息; 与最先进的正常流动技术相比,拟议方法依赖于功能近似,并配有彻底的性能分析; 这还使我们能够进一步扩大运输地图的能力,以挑战高维观察和高维信仰变量的问题。 一方面,我们提出新的超常,以重新排序和(或)重新配置变量,以加强TT的近似能力; 另一方面,我们将基于TT的运输图和参数重新排序/修复纳入分层构成,以进一步改进所生成的运输地图的性能。 我们展示了在普通差异方程式中(差异方程式)各种统计学习任务(差异方程式)的拟议方法的效率。