We extend a certain type of identities on sums of $I$-Bessel functions on lattices, previously given by G. Chinta, J. Jorgenson, A Karlsson and M. Neuhauser. Moreover we prove that, with continuum limit, the transformation formulas of theta functions such as the Dedekind eta function can be given by $I$-Bessel lattice sum identities with characters. We consider analogues of theta functions of lattices coming from linear codes and show that sums of $I$-Bessel functions defined by linear codes can be expressed by complete weight enumerators. We also prove that $I$-Bessel lattice sums appear as solutions of heat equations on general lattices. As a further application, we obtain an explicit solution of the heat equation on $\mathbb{Z}^n$ whose initial condition is given by a linear code.
翻译:暂无翻译