Collaborative filtering problems are commonly solved based on matrix completion techniques which recover the missing values of user-item interaction matrices. In a matrix, the rating position specifically represents the user given and the item rated. Previous matrix completion techniques tend to neglect the position of each element (user, item and ratings) in the matrix but mainly focus on semantic similarity between users and items to predict the missing value in a matrix. This paper proposes a novel position-enhanced user/item representation training model for recommendation, SUPER-Rec. We first capture the rating position in the matrix using the relative positional rating encoding and store the position-enhanced rating information and its user-item relationship to the fixed dimension of embedding that is not affected by the matrix size. Then, we apply the trained position-enhanced user and item representations to the simplest traditional machine learning models to highlight the pure novelty of our representation learning model. We contribute the first formal introduction and quantitative analysis of position-enhanced item representation in the recommendation domain and produce a principled discussion about our SUPER-Rec to the outperformed performance of typical collaborative filtering recommendation tasks with both explicit and implicit feedback.
翻译:合作过滤问题通常根据矩阵完成技术解决,该技术恢复了用户-项目互动矩阵缺失的价值。在一个矩阵中,评级位置具体代表给定用户和评级项目。以前的矩阵完成技术往往忽视矩阵中每个要素(用户、项目和评级)的位置,但主要侧重于用户和项目之间的语义相似性,以预测矩阵中缺失的价值。本文件为推荐建议提出了一个新的职位强化用户/项目代表培训模式SUPER-Rec。我们首先使用相对位置评级编码来记录矩阵中的评级位置,并存储职位强化评级信息及其用户-项目与不受到矩阵规模影响的嵌入的固定层面的关系。然后,我们将经过培训的定位强化用户和项目表达方式应用到最简单的传统机器学习模式中,以突出我们代表学习模式的纯新性。我们为推荐领域定位强化项目代表提供了第一次正式介绍和定量分析,并就我们SUPER-Rec对典型合作过滤建议的超常性表现提供了原则性讨论,并提供了明确的反馈。