In this article we relate a family of methods for automated inductive theorem proving based on cycle detection in saturation-based provers to well-known theories of induction. To this end we introduce the notion of clause set cycles -- a formalism abstracting a certain type of cyclic dependency between clause sets. We first show that the formalism of clause set cycles is contained in the theory of $\exists_1$ induction. Secondly we consider the relation between clause set cycles and the theory of open induction. By providing a finite axiomatization of a theory of triangular numbers with open induction we show that the formalism of clause set cycles is not contained in the theory of open induction. Furthermore we conjecture that open induction and clause set cycles are incomparable. Finally, we transfer these results to a concrete method of automated inductive theorem proving called the n-clause calculus.


翻译:在本条中,我们把一系列基于在饱和式验证中以循环检测为基础的自动感应理论证明方法与众所周知的感应理论联系起来。为此目的,我们引入了条款设定周期的概念 -- -- 一种形式主义,在条款组之间抽取了某种类型的周期依赖性。我们首先表明,条款设定周期的形式主义包含在$\existences_1$imption理论中。第二,我们考虑了条款设定周期与开放感应理论之间的关系。通过对带有公开感应的三角数字理论进行有限的分解化,我们表明,条款设定的周期形式主义并没有包含在公开感应理论中。此外,我们推测,开放感应和条款设定周期的周期是无法比较的。最后,我们将这些结果转换为一种名为n-clause calculus的自动感应感应导理论的具体方法。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关主题
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员