The significance and influence of US Supreme Court majority opinions derive in large part from opinions' roles as precedents for future opinions. A growing body of literature seeks to understand what drives the use of opinions as precedents through the study of Supreme Court case citation patterns. We raise two limitations of existing work on Supreme Court citations. First, dyadic citations are typically aggregated to the case level before they are analyzed. Second, citations are treated as if they arise independently. We present a methodology for studying citations between Supreme Court opinions at the dyadic level, as a network, that overcomes these limitations. This methodology -- the citation exponential random graph model, for which we provide user-friendly software -- enables researchers to account for the effects of case characteristics and complex forms of network dependence in citation formation. We then analyze a network that includes all Supreme Court cases decided between 1950 and 2015. We find evidence for dependence processes, including reciprocity, transitivity, and popularity. The dependence effects are as substantively and statistically significant as the effects of exogenous covariates, indicating that models of Supreme Court citation should incorporate both the effects of case characteristics and the structure of past citations.
翻译:美国最高法院多数意见的意义和影响在很大程度上来自意见作为未来意见的先例的作用。越来越多的文献试图通过研究最高法院案例引证模式来理解是什么驱动将意见用作先例。我们对最高法院引证的现有工作提出了两项限制。首先,三元引证通常在分析之前就被汇总到案件一级。第二,引证被视为独立产生的。我们提出了一个方法,用以研究最高法院在dyadic一级作为网络在克服这些限制的法院意见之间的引证。这一方法 -- -- 引证指数随机图表模型,我们为它提供方便用户的软件 -- -- 使研究人员能够对案件特点和在引证形成过程中依赖网络的复杂形式的影响进行解释。然后,我们分析了一个包括1950年至2015年期间所裁决的所有最高法院案件在内的网络。我们发现依赖性过程的证据,包括互惠、过渡性和受欢迎程度。依赖性影响与外部共变效应一样具有实质性和统计意义,表明最高法院引证模式应当包括案件特性和过去引证结构的影响。