Identity authentication is the process of verifying one's identity. There are several identity authentication methods, among which biometric authentication is of utmost importance. Facial recognition is a sort of biometric authentication with various applications, such as unlocking mobile phones and accessing bank accounts. However, presentation attacks pose the greatest threat to facial recognition. A presentation attack is an attempt to present a non-live face, such as a photo, video, mask, and makeup, to the camera. Presentation attack detection is a countermeasure that attempts to identify between a genuine user and a presentation attack. Several industries, such as financial services, healthcare, and education, use biometric authentication services on various devices. This illustrates the significance of presentation attack detection as the verification step. In this paper, we study state-of-the-art to cover the challenges and solutions related to presentation attack detection in a single place. We identify and classify different presentation attack types and identify the state-of-the-art methods that could be used to detect each of them. We compare the state-of-the-art literature regarding attack types, evaluation metrics, accuracy, and datasets and discuss research and industry challenges of presentation attack detection. Most presentation attack detection approaches rely on extensive data training and quality, making them difficult to implement. We introduce an efficient active presentation attack detection approach that overcomes weaknesses in the existing literature. The proposed approach does not require training data, is CPU-light, can process low-quality images, has been tested with users of various ages and is shown to be user-friendly and highly robust to 2-dimensional presentation attacks.


翻译:身份认证是验证身份的过程。 存在几种身份认证方法,其中生物鉴别认证是最重要的。 面部识别是一种生物鉴别认证,有各种应用,例如手机解锁和银行账户访问。 然而, 演示攻击对面部识别构成最大的威胁。 演示攻击是试图向相机展示非活面孔, 如照片、视频、面具和化妆。 演示攻击探测是试图识别真正用户和演示攻击之间的一种应对措施。 金融服务、保健和教育等行业在各种装置上使用生物鉴别服务。 这说明演示攻击探测作为核查步骤的重要性。 在本文中,我们研究与演示攻击探测有关的挑战和解决方案。 我们确定和分类不同的演示类型,并确定可用于检测每一种攻击的最先进方法。 我们比较了有关攻击类型、评价指标、准确性、数据设置和讨论生物鉴别工具的各种行业。 展示攻击探测目标的展示方式很重要。 演示质量的方法是快速测试, 测试攻击的当前测试方法是快速检测。 演示质量的方法是快速测试。 演示的演示方法是快速测试。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
0+阅读 · 2023年2月11日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员