Ultra-wideband is increasingly advancing as a high data rate wireless technology after the Federal Communication Commission announced the bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra-wideband applications. Furthermore, designing a UWB antenna faces more difficulties than designing a narrow band antenna. A suitable UWB antenna should be able to work over the Federal Communication Commission of ultra-wide bandwidth allocation. Furthermore, good radiation properties across the entire frequency spectrum are needed. This paper outlines an optimization of fractal square microstrip patch antenna with the partial ground using a genetic algorithm at 3.5 GHz and 6 GHz. The optimized antenna design shows improved results compared to the non-optimized design. This design is optimized using a genetic algorithm and simulated using CST simulation software. The size of the optimized design is reduced by cutting the edges and the center of the patch. The optimized results reported, and concentrated on the rerun loss, VSWR and gain. The results indicate a significant enhancement as is illustrated in Table II. Thus, the optimized design is suitable for S-band and C-band applications.


翻译:在联邦通信委员会宣布为超宽带应用7.5千兆赫(从3.1千兆赫到10.6千兆赫)的带宽为7.5千兆赫(从3.1千兆赫到10.6千兆赫)之后,超大带宽日益作为一种高数据率无线技术而进步。此外,设计UWB天线比设计窄带天线要困难得多。合适的UWB天线应该能够在联邦通信委员会进行超广带宽分配工作。此外,整个频谱都需要良好的辐射特性。本文件概述了利用3.5千兆赫和6千兆赫的遗传算法优化碎方方微粒天线与部分地面的优化。优化天线设计显示与非优化设计相比,效果有所改进。因此,优化的设计使用基因算法和模拟使用科技委模拟软件加以优化。优化的设计规模通过切断边缘和中间的补丁中心而缩小。报告的最佳结果集中于重新运行的损失、甚低频带和增益。结果显示,如表二所示,优化的设计适合于S波带和C波段应用。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
已删除
将门创投
3+阅读 · 2017年10月27日
Arxiv
0+阅读 · 2021年12月6日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2017年10月27日
Top
微信扫码咨询专知VIP会员