Face super-resolution (FSR) is a critical technique for enhancing low-resolution facial images and has significant implications for face-related tasks. However, existing FSR methods are limited by fixed up-sampling scales and sensitivity to input size variations. To address these limitations, this paper introduces an Arbitrary-Resolution and Arbitrary-Scale FSR method with implicit representation networks (ARASFSR), featuring three novel designs. First, ARASFSR employs 2D deep features, local relative coordinates, and up-sampling scale ratios to predict RGB values for each target pixel, allowing super-resolution at any up-sampling scale. Second, a local frequency estimation module captures high-frequency facial texture information to reduce the spectral bias effect. Lastly, a global coordinate modulation module guides FSR to leverage prior facial structure knowledge and achieve resolution adaptation effectively. Quantitative and qualitative evaluations demonstrate the robustness of ARASFSR over existing state-of-the-art methods while super-resolving facial images across various input sizes and up-sampling scales.
翻译:人脸超分辨率是一项提升低分辨率人脸图像质量的关键技术,对人脸相关任务具有重要影响。然而,现有的人脸超分辨率方法受限于固定的上采样尺度以及对输入尺寸变化的敏感性。为解决这些局限性,本文提出了一种基于隐式表示网络的任意分辨率与任意尺度人脸超分辨率方法,该方法包含三项创新设计。首先,ARASFSR利用二维深度特征、局部相对坐标和上采样比例来预测每个目标像素的RGB值,从而实现在任意上采样尺度下的超分辨率重建。其次,通过局部频率估计模块捕获高频人脸纹理信息,以减轻频谱偏差效应。最后,全局坐标调制模块引导超分辨率过程利用先验的人脸结构知识,并有效实现分辨率自适应。定量与定性评估表明,ARASFSR在处理不同输入尺寸和上采样尺度的人脸图像超分辨率任务时,相较于现有先进方法展现出更强的鲁棒性。