An $\left( n+1\right) -$D coefficient inverse problem for the radiative stationary transport equation is considered for the first time. A globally convergent so-called convexification numerical \ method is developed and its convergence analysis is provided. The analysis is based on a Carleman estimate. In particular, convergence analysis implies a certain uniqueness theorem. Extensive numerical studies in the 2-D case are presented.
翻译:首次考虑辐射固定运输方程式的 $\ left( n+1\right) - $D 系数逆向问题。 开发了一个全球趋同的所谓凝固数字\ 方法, 并提供其趋同分析。 分析基于Carleman 的估算值。 特别是, 趋同分析意味着某种独特的理论。 在 2- D 中提供了广泛的数字研究 。