We propose a way to transform synchronous distributed algorithms solving locally greedy and mendable problems into self-stabilizing algorithms in anonymous networks. Mendable problems are a generalization of greedy problems where any partial solution may be transformed -- instead of completed -- into a global solution: every time we extend the partial solution we are allowed to change the previous partial solution up to a given distance. Locally here means that to extend a solution for a node, we need to look at a constant distance from it. In order to do this, we propose the first explicit self-stabilizing algorithm computing a $(k,k-1)$-ruling set (i.e. a "maximal independent set at distance $k$"). By combining multiple time this technique, we compute a distance-$K$ coloring of the graph. With this coloring we can finally simulate \local~model algorithms running in a constant number of rounds, using the colors as unique identifiers. Our algorithms work under the Gouda daemon, which is similar to the probabilistic daemon: if an event should eventually happen, it will occur under this daemon.
翻译:我们建议一种方法,将同步分布式算法转换成匿名网络中解决本地贪婪和可修正问题的自稳定算法。 门性问题是贪婪问题的概括化, 任何部分解决方案都可以转换为全球解决方案, 而不是完成。 每次我们将部分解决方案扩展为部分解决方案, 允许我们将先前的部分解决方案转换为一定的距离。 本地化意味着要扩展节点的解决方案, 我们需要查看与节点之间的恒定距离。 为了做到这一点, 我们建议了第一个明确的自我稳定算法, 计算$( k, k-1) 的运行套件( 即“ 最大独立设定在距离 $k$ ” 。 通过将这一方法多次组合, 我们就可以计算出一张图的远程- $ 彩色。 有了这种颜色, 我们就能最终用颜色作为独特的标识来模拟连续数的本地的 ~ 模型算法 。 我们的算法工作在Gouda da da da daemon 下, 类似于 probabiticlamon 的算法: 如果一个事件最终发生, 将在这个 damon 下进行 。