Neural Machine Translation (NMT) systems are typically evaluated using automated metrics that assess the agreement between generated translations and ground truth candidates. To improve systems with respect to these metrics, NLP researchers employ a variety of heuristic techniques, including searching for the conditional mode (vs. sampling) and incorporating various training heuristics (e.g., label smoothing). While search strategies significantly improve BLEU score, they yield deterministic outputs that lack the diversity of human translations. Moreover, search tends to bias the distribution of translated gender pronouns. This makes human-level BLEU a misleading benchmark in that modern MT systems cannot approach human-level BLEU while simultaneously maintaining human-level translation diversity. In this paper, we characterize distributional differences between generated and real translations, examining the cost in diversity paid for the BLEU scores enjoyed by NMT. Moreover, our study implicates search as a salient source of known bias when translating gender pronouns.


翻译:神经机器翻译系统(NMT)通常使用自动衡量标准进行评估,评估生成的翻译和地面真理候选人之间的协议。为了改进这些衡量标准方面的系统,NLP研究人员采用各种制革技术,包括寻找有条件模式(v.采样),并纳入各种培训的湿度学(例如标签平滑),虽然搜索战略大大提高了BLEU的分数,但它们产生缺乏人文翻译多样性的确定性产出。此外,搜索往往偏向于翻译的性别代名词的分布。这使得人类一级BLEU成为误导性基准,因为现代的MT系统不能接近人文层次的BLEU,同时保持人文层次的翻译多样性。在本文中,我们描述生成的翻译与实际翻译之间的分配差异,审查为NMT享有的BLEU分数支付的多样性成本。此外,我们的研究还暗示,在翻译性别代名词时,搜索是已知偏见的明显来源。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员