An important question in statistical network analysis is how to estimate models of discrete and dependent network data with intractable likelihood functions, without sacrificing computational scalability and statistical guarantees. We demonstrate that scalable estimation of random graph models with dependent edges is possible, by establishing convergence rates of pseudo-likelihood-based $M$-estimators for discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. We highlight the impact of two complex phenomena on the convergence rate: phase transitions and model near-degeneracy. The main results have possible applications to discrete and dependent network, spatial, and temporal data. To showcase convergence rates, we introduce a novel class of generalized $\beta$-models with dependent edges and parameter vectors of increasing dimension, which leverage additional structure in the form of overlapping subpopulations to control dependence. We establish convergence rates of pseudo-likelihood-based $M$-estimators for generalized $\beta$-models in dense- and sparse-graph settings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员