Few ideas have enjoyed as large an impact on deep learning as convolution. For any problem involving pixels or spatial representations, common intuition holds that convolutional neural networks may be appropriate. In this paper we show a striking counterexample to this intuition via the seemingly trivial coordinate transform problem, which simply requires learning a mapping between coordinates in (x,y) Cartesian space and one-hot pixel space. Although convolutional networks would seem appropriate for this task, we show that they fail spectacularly. We demonstrate and carefully analyze the failure first on a toy problem, at which point a simple fix becomes obvious. We call this solution CoordConv, which works by giving convolution access to its own input coordinates through the use of extra coordinate channels. Without sacrificing the computational and parametric efficiency of ordinary convolution, CoordConv allows networks to learn either complete translation invariance or varying degrees of translation dependence, as required by the end task. CoordConv solves the coordinate transform problem with perfect generalization and 150 times faster with 10--100 times fewer parameters than convolution. This stark contrast raises the question: to what extent has this inability of convolution persisted insidiously inside other tasks, subtly hampering performance from within? A complete answer to this question will require further investigation, but we show preliminary evidence that swapping convolution for CoordConv can improve models on a diverse set of tasks. Using CoordConv in a GAN produced less mode collapse as the transform between high-level spatial latents and pixels becomes easier to learn. A Faster R-CNN detection model trained on MNIST showed 24% better IOU when using CoordConv, and in the RL domain agents playing Atari games benefit significantly from the use of CoordConv layers.


翻译:很少有想法能够像变迁一样对深层学习产生巨大影响。 对于任何涉及像素或空间表达的任何问题, 共同直觉认为, 进化神经网络可能是合适的。 在本文中, 我们通过似乎微不足道的协调转变问题展示出一个惊人的反直觉反比。 这只需要学习( X,y) 卡尔泰西亚空间和一热像素空间坐标之间的映射。 虽然共变网络似乎适合这项任务, 但是我们显示它们失败的程度惊人。 我们首先展示并仔细分析一个与玩具问题有关的失败, 在那点, 一个简单的修正变得显而易见。 我们称之为Coord Convon, 通过使用额外的协调渠道让进化访问到自己的输入坐标。 在不牺牲普通变迁的计算和参数效率的情况下, CoordonConvil允许网络学习完全的翻译或不同程度的翻译依赖性。 Iord Convild Convil 运行模式可以解决协调变换问题, 精确化问题比变现的参数要快150倍。 这个鲜明的对比是: 在变现过程中, 快速变变变变变变变, 将多少? 当我们无法进行这种变现时, 在变变现过程中, 变变变更 变更 更 变 的 更 更 更 更 更 更 更 更 的 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 更 的 更 更 更 的 的 更 更 更 更 更 更 更 的 更 更 的 更 更 的 的 更 的 的 更 更 的 更 更 更 更 更 更 的 的 的 的 更 更 更 更 更 更 更 更 的 更 更 更 的 的 的 的 更 的 的 更 更 更 的 更 更 更 更 更 更 更 的 更 更 更 更 的 的 的 的 的 更 更 更 更 更 更 更 更 更 更 更 更 的 的 的 的 的

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员