This paper proposes to build a bridge between microscopic descriptions of matter with internal energy, composed of many fast interacting particles inside an environment, and their port-Hamiltonian (PH) descriptions at macroscopic scale. The environment, assumed to be slow, is modeled through experimental constraints on macroscopic quantities (e.g. energy, particle number, etc), with a partitioning into two classes: non fluctuating and fluctuating values. The method to derive the PH macroscopic laws is detailed in several steps and illustrated on two standard cases (ideal gas, Ising ferromagnets). It revisits equilibrium statistical physics with a focus on this partitioning. First, the Boltzmann's principle is used to provide the statistic law of the matter. It defines a macroscopic equilibrium characterized by a scalar value, the entropy, together with thermodynamic quantities emerging from each constraint. Then, the port-Hamiltonian system is derived. The Hamiltonian (macroscopic energy) is derived as a function of the macroscopic state (entropy and the macroscopic quantities associated with the fluctuating class). The ports (flows/efforts) are related to the time-derivative of the state and the Hamiltonian gradient in a conservative way. This open system defines the reversible laws that govern standard thermodynamic quantities. Lastly, this paper presents a strategy to extend this PH system to an irreversible conservative one, given a macroscopic dissipative law.
翻译:本文建议在以内部能量对物质进行微观的描述( 由环境中许多快速互动的粒子组成) 和其港口- Hamiltonian (PH) 以宏观规模的描述之间架起一座桥梁。 环境假定缓慢, 其模型是通过大型数量( 如能源、 粒子数量等) 的实验性限制来建模的, 其特性分为两大类: 非波动和波动值。 随后, 以若干步骤详细描述得出 PH 宏观值法律的方法, 并用两个标准案例( 理想气体, 正在使用铁磁网 ) 来演示。 它重新审视平衡统计物理, 重点是此分区。 首先, 布尔茨曼 原则被用来提供该物质的统计法 。 它定义了一个宏观平衡性平衡, 以一个升幅值值为模型值, 以及从每个约束值中产生的热力量数量。 然后, 港口- Hmilton 系统 以两个标准( 开放性稳定性能源) 来作为宏观状态的函数( 默认性和时间结构 ), 将这个数值序列值定义为该级/ 与 递变的递变的纸质规则 。