Counterfactual reasoning -- envisioning hypothetical scenarios, or possible worlds, where some circumstances are different from what (f)actually occurred (counter-to-fact) -- is ubiquitous in human cognition. Conventionally, counterfactually-altered circumstances have been treated as "small miracles" that locally violate the laws of nature while sharing the same initial conditions. In Pearl's structural causal model (SCM) framework this is made mathematically rigorous via interventions that modify the causal laws while the values of exogenous variables are shared. In recent years, however, this purely interventionist account of counterfactuals has increasingly come under scrutiny from both philosophers and psychologists. Instead, they suggest a backtracking account of counterfactuals, according to which the causal laws remain unchanged in the counterfactual world; differences to the factual world are instead "backtracked" to altered initial conditions (exogenous variables). In the present work, we explore and formalise this alternative mode of counterfactual reasoning within the SCM framework. Despite ample evidence that humans backtrack, the present work constitutes, to the best of our knowledge, the first general account and algorithmisation of backtracking counterfactuals. We discuss our backtracking semantics in the context of related literature and draw connections to recent developments in explainable artificial intelligence (XAI).


翻译:反事实推理 -- -- 设想假设假设情景,或可能的世界,其中某些情况与(f)实际发生的(反事实)不同 -- -- 在人类认知中普遍存在反事实推理。 公约将反事实推理视为当地违反自然法则的“小奇迹”,同时分享相同的初始条件。在珍珠的结构性因果模型(SCM)框架中,通过修改因果关系法的干预措施,同时共享外源变量的价值,使这种结构因果模型在数学上变得严格。然而,近年来,哲学家和心理学家越来越关注这种纯粹干涉性的反事实陈述。相反,它们提出了反事实的反分析解释,根据这种解释,因果法律在反事实世界中保持不变;与事实世界的差异则“倒退”到初始条件(外源变量)的改变。在目前的工作中,我们探索并正式确定在SCM框架内反事实推理的替代模式。尽管有充足的证据表明人类背轨,但目前的工作构成反事实的纯粹干涉性陈述,反事实的推理学是反事实的反事实的反推理学,在我们的理论中,我们总轨上解释了我们总的逻辑。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员