Herding is a deterministic algorithm used to generate data points that can be regarded as random samples satisfying input moment conditions. The algorithm is based on the complex behavior of a high-dimensional dynamical system and is inspired by the maximum entropy principle of statistical inference. In this paper, we propose an extension of the herding algorithm, called entropic herding, which generates a sequence of distributions instead of points. Entropic herding is derived as the optimization of the target function obtained from the maximum entropy principle. Using the proposed entropic herding algorithm as a framework, we discuss a closer connection between herding and the maximum entropy principle. Specifically, we interpret the original herding algorithm as a tractable version of entropic herding, the ideal output distribution of which is mathematically represented. We further discuss how the complex behavior of the herding algorithm contributes to optimization. We argue that the proposed entropic herding algorithm extends the application of herding to probabilistic modeling. In contrast to original herding, entropic herding can generate a smooth distribution such that both efficient probability density calculation and sample generation become possible. To demonstrate the viability of these arguments in this study, numerical experiments were conducted, including a comparison with other conventional methods, on both synthetic and real data.


翻译:放牧是一种决定性的算法,用于生成数据点,可以被视为随机样本,满足输入时刻的条件。算法基于高维动态系统的复杂行为,并受统计推断的最大引力原则的启发。在本文中,我们提议扩大放牧算法,称为昆虫放牧,产生一个分布序列而不是点。主畜牧是作为优化从最大恒温原则获得的目标函数而衍生出来的。使用拟议的昆虫放牧算法作为框架,我们讨论放牧和最大恒温原则之间的更紧密联系。具体地说,我们将原始放牧算法解释为可移植的变动版,其理想输出分布以数学方式表示。我们进一步讨论了放牧算法的复杂行为如何有助于优化。我们争论说,拟议的昆虫放牧算法将放牧的应用扩展至概率模型的优化。与原始放牧算法形成对照,与原始放牧算法和最大恒定法原则之间,我们将产生一种平稳的分布,既能高效的概率计算,又能生成样本原理的原则。我们进一步讨论,在进行这些实际的实验中展示了其他数据的可行性,包括了这些实际的比较方法。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
14+阅读 · 2021年5月21日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月23日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员