We propose inferential tools for functional linear quantile regression where the conditional quantile of a scalar response is assumed to be a linear functional of a functional covariate. In contrast to conventional approaches, we employ kernel convolution to smooth the original loss function. The coefficient function is estimated under a reproducing kernel Hilbert space framework. A gradient descent algorithm is designed to minimize the smoothed loss function with a roughness penalty. With the aid of the Banach fixed-point theorem, we show the existence and uniqueness of our proposed estimator as the minimizer of the regularized loss function in an appropriate Hilbert space. Furthermore, we establish the convergence rate as well as the weak convergence of our estimator. As far as we know, this is the first weak convergence result for a functional quantile regression model. Pointwise confidence intervals and a simultaneous confidence band for the true coefficient function are then developed based on these theoretical properties. Numerical studies including both simulations and a data application are conducted to investigate the performance of our estimator and inference tools in finite sample.
翻译:我们提议了功能线性微量回归的推断工具, 假设标度反应的有条件量是功能共变的线性函数。 与常规方法不同, 我们使用内核回旋来平滑原始损失函数。 系数函数是在复制核心Hilbert空间框架下估计的。 梯度下移算法旨在以粗度罚款将平滑的损失函数最小化。 在Banach 固定点理论的帮助下, 我们展示了我们提议的估算员的存在和独特性, 以之作为适当Hilbert空间正常损失函数的最小化者。 此外, 我们建立了趋同率以及我们天顶点的薄弱趋同率。 据我们所知, 这是功能微量回归模型的第一个弱趋同结果。 然后根据这些理论特性发展了真实系数函数的点信任间隔和同步信任带。 包括模拟和数据应用在内的数字研究, 以调查我们测量员的性能和定点抽样中的推断工具。