Several techniques to map various types of components, such as words, attributes, and images, into the embedded space have been studied. Most of them estimate the embedded representation of target entity as a point in the projective space. Some models, such as Word2Gauss, assume a probability distribution behind the embedded representation, which enables the spread or variance of the meaning of embedded target components to be captured and considered in more detail. We examine the method of estimating embedded representations as probability distributions for the interpretation of fashion-specific abstract and difficult-to-understand terms. Terms, such as "casual," "adult-casual,'' "beauty-casual," and "formal," are extremely subjective and abstract and are difficult for both experts and non-experts to understand, which discourages users from trying new fashion. We propose an end-to-end model called dual Gaussian visual-semantic embedding, which maps images and attributes in the same projective space and enables the interpretation of the meaning of these terms by its broad applications. We demonstrate the effectiveness of the proposed method through multifaceted experiments involving image and attribute mapping, image retrieval and re-ordering techniques, and a detailed theoretical/analytical discussion of the distance measure included in the loss function.


翻译:在嵌入空间中映射各种类型的组成部分,例如文字、属性和图像的几种技术已经研究过,其中多数对目标实体作为投影空间的一个点的嵌入式表示进行了估计。有些模型,如Word2Gaus, 假设嵌入式表示法背后的概率分布,使嵌入目标组成部分的含义能够扩散或变化,可以捕捉和更详细地考虑。我们研究了内嵌表示法作为解释特定时装抽象和难以理解的术语的概率分布的估算方法。术语,如“自体”、“不成熟的”、“美容性”和“形式”是极端主观和抽象的,对专家和非专家来说都是难以理解的,这阻碍了用户尝试新的方式。我们提出了一个端对端模型,称为双高斯视觉-图像嵌入式,用来绘制同一投影空间的图像和属性,并能够通过其广泛应用对这些术语的含义进行解释。我们通过在图像和属性绘图和属性绘图、详细图像检索和测距技术中进行多方面实验,我们展示了拟议方法的有效性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员