This paper considers the problem of modeling and estimating community memberships of nodes in a directed network where every row (column) node is associated with a vector determining its membership in each row (column) community. To model such directed network, we propose directed degree corrected mixed membership (DiDCMM) model by considering degree heterogeneity. DiDCMM is identifiable under popular conditions for mixed membership network when considering degree heterogeneity. Based on the cone structure inherent in the normalized version of the left singular vectors and the simplex structure inherent in the right singular vectors of the population adjacency matrix, we build an efficient algorithm called DiMSC to infer the community membership vectors for both row nodes and column nodes. By taking the advantage of DiMSC's equivalence algorithm which returns same estimations as DiMSC and the recent development on row-wise singular vector deviation, we show that the proposed algorithm is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vectors of each row node and each column node under DiDCMM. The theory is supplemented by a simulation study.


翻译:本文考虑了在定向网络中对节点社区成员进行建模和估计的问题,每个行(列)节点都与矢量确定为每行(列)社区成员的矢量相联系。为了模拟这种定向网络,我们建议通过考虑程度异质性来模拟直接度纠正混合成员(DIDAMM)模式。在考虑程度异质性时,DIDDCMM在混合成员网络的流行条件下是可识别的。根据左单向矢量的正常版本所固有的锥体结构以及人口右单向矢量所固有的简单x结构,我们建立了一个称为DIMSC的有效算法,用以推断行节点和列节点下的社区成员矢量。通过利用DIMSC的等值算法,得出与DMSC相同的估计值,以及最近对单向单向矢量偏离的开发,我们表明,拟议的算法在温和性条件下,通过为DIDDCMMMMM的每个行节点和每列节点的推断成员矢量提供错误界限,从而对理论进行模拟研究。

0
下载
关闭预览

相关内容

【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
18+阅读 · 2021年10月20日
专知会员服务
38+阅读 · 2020年9月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
9+阅读 · 2021年10月31日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月25日
Arxiv
9+阅读 · 2021年10月31日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Top
微信扫码咨询专知VIP会员