The traditional Machine Learning (ML) methodology requires to fragment the development and experimental process into disconnected iterations whose feedback is used to guide design or tuning choices. This methodology has multiple efficiency and scalability disadvantages, such as leading to spend significant resources into the creation of multiple trial models that do not contribute to the final solution.The presented work is based on the intuition that defining ML models as modular and extensible artefacts allows to introduce a novel ML development methodology enabling the integration of multiple design and evaluation iterations into the continuous enrichment of a single unbounded intelligent system. We define a novel method for the generation of dynamic multitask ML models as a sequence of extensions and generalizations. We first analyze the capabilities of the proposed method by using the standard ML empirical evaluation methodology. Finally, we propose a novel continuous development methodology that allows to dynamically extend a pre-existing multitask large-scale ML system while analyzing the properties of the proposed method extensions. This results in the generation of an ML model capable of jointly solving 124 image classification tasks achieving state of the art quality with improved size and compute cost.


翻译:传统的机器学习(ML)方法要求将开发和实验过程分解为断开的迭代,其反馈用于指导设计或调整选择。这种方法具有多重效率和可缩放性缺点,例如导致大量资源用于创建多种试验模型,但无助于最终解决办法。 所提出的工作基于直觉,将ML模型定义为模块和可扩展的人工制品,从而可以引入一种新的ML发展方法,将多式设计和评价迭代纳入单一的无限制智能系统的连续浓缩中。我们界定了生成动态多任务ML模型的新方法,作为扩展和概括的顺序。我们首先通过使用标准的ML经验评估方法分析拟议方法的能力。最后,我们提出一个新的持续开发方法,以便能够动态扩展一个以前存在的多任务大型人工工艺系统,同时分析拟议方法扩展的特性。这导致生成一个ML模型,能够联合解决124个图像分类任务,从而以改良的大小和计算成本实现艺术质量状态。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员