This paper presents TurboMap, a GPU-accelerated and CPU-optimized local mapping module for visual SLAM systems. We identify key performance bottlenecks in the local mapping process for visual SLAM and address them through targeted GPU and CPU optimizations. Specifically, we offload map point triangulation and fusion to the GPU, accelerate redundant keyframe culling on the CPU, and integrate a GPU-accelerated solver to speed up local bundle adjustment. Our implementation is built on top of ORB-SLAM3 and leverages CUDA for GPU programming. The experimental results show that TurboMap achieves an average speedup of 1.3x in the EuRoC dataset and 1.6x in the TUM-VI dataset in the local mapping module, on both desktop and embedded platforms, while maintaining the accuracy of the original system.
翻译:本文提出TurboMap,一种面向视觉SLAM系统的GPU加速与CPU优化的局部建图模块。我们识别了视觉SLAM局部建图过程中的关键性能瓶颈,并通过针对性的GPU与CPU优化予以解决。具体而言,我们将地图点三角化与融合任务卸载至GPU,在CPU上加速冗余关键帧剔除,并集成GPU加速求解器以提升局部光束法平差速度。本实现基于ORB-SLAM3框架构建,并采用CUDA进行GPU编程。实验结果表明,在桌面与嵌入式平台上,TurboMap在EuRoC数据集的局部建图模块中平均加速1.3倍,在TUM-VI数据集中平均加速1.6倍,同时保持了原系统的精度。