What guarantees are possible for solving logistic regression in one pass over a data stream? To answer this question, we present the first data oblivious sketch for logistic regression. Our sketch can be computed in input sparsity time over a turnstile data stream and reduces the size of a $d$-dimensional data set from $n$ to only $\operatorname{poly}(\mu d\log n)$ weighted points, where $\mu$ is a useful parameter which captures the complexity of compressing the data. Solving (weighted) logistic regression on the sketch gives an $O(\log n)$-approximation to the original problem on the full data set. We also show how to obtain an $O(1)$-approximation with slight modifications. Our sketches are fast, simple, easy to implement, and our experiments demonstrate their practicality.


翻译:为了解答这个问题,我们提出了第一个不为逻辑回归而绘制的数据图。我们的草图可以用一个旋转式数据流的输入宽度时间来计算,并将一个美元维数数据集的大小从一美元减到只有$operatorname{poly}(\mu d\log n)的加权点,其中$\mu$是一个有用的参数,可以捕捉数据压缩的复杂性。在草图上绘制的(加权)后勤图图图图表显示一个$(O\log n)的接近度,整个数据集的原始问题。我们还展示了如何在稍作修改后获得一美元维数数据集。我们的草图非常快捷、简单、易于执行,而且实验也证明了其实用性。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月11日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员