As more and more people begin to wear masks due to current COVID-19 pandemic, existing face recognition systems may encounter severe performance degradation when recognizing masked faces. To figure out the impact of masks on face recognition model, we build a simple but effective tool to generate masked faces from unmasked faces automatically, and construct a new database called Masked LFW (MLFW) based on Cross-Age LFW (CALFW) database. The mask on the masked face generated by our method has good visual consistency with the original face. Moreover, we collect various mask templates, covering most of the common styles appeared in the daily life, to achieve diverse generation effects. Considering realistic scenarios, we design three kinds of combinations of face pairs. The recognition accuracy of SOTA models declines 4\%-10\% on MLFW database compared with the accuracy on the original images. Our MLFW database can be viewed and downloaded at \url{http://whdeng.cn/mlfw}.
翻译:随着越来越多的人开始因当前的COVID-19大流行而戴面罩,现有的面部识别系统在识别面部时可能会遇到严重的性能退化。为了了解面部识别模型的影响,我们建立了一个简单而有效的工具,以自动从无面部生成面部蒙面部,并基于Cros-Age LFW(CALFW)数据库建立一个新的数据库,称为蒙面的LFW(MLFW)。我们的方法产生的面部遮面面罩与原始面部有良好的视觉一致性。此外,我们收集了各种面部模板,覆盖日常生活中出现的多数常见风格,以实现不同的生成效果。考虑到现实的情景,我们设计了三种组合面部组合。SOTA模型的识别准确性比原始图像的准确性下降了4 ⁇ -10 ⁇ 。我们的MLFW数据库可以在\url{http://wdeng.cn/mlww}上查看和下载。