We consider finite-state channels (FSCs) where the channel state is stochastically dependent on the previous channel output. We refer to these as Noisy Output is the STate (NOST) channels. We derive the feedback capacity of NOST channels in two scenarios: with and without causal state information (CSI) available at the encoder. If CSI is unavailable, the feedback capacity is $C_{\text{FB}}= \max_{P(x|y')} I(X;Y|Y')$, while if it is available at the encoder, the feedback capacity is $C_{\text{FB-CSI}}= \max_{P(u|y'),x(u,s')} I(U;Y|Y')$, where $U$ is an auxiliary random variable with finite cardinality. In both formulas, the output process is a Markov process with stationary distribution. The derived formulas generalize special known instances from the literature, such as where the state is distributed i.i.d. and where it is a deterministic function of the output. $C_{\text{FB}}$ and $C_{\text{FB-CSI}}$ are also shown to be computable via concave optimization problem formulations. Finally, we give a sufficient condition under which CSI available at the encoder does not increase the feedback capacity, and we present an interesting example that demonstrates this.


翻译:我们考虑的是频道状态取决于上一个频道输出的有限状态频道( FSCs) 。 我们称之为 Nosy 输出是STate (NOST) 频道。 我们从两个情景中获取NOST 频道的反馈能力: 有或无因果状态信息( CSI ) 在编码器中。 如果 CSI 无法提供, 反馈能力是 $C ⁇ text{FB}\\\\max ⁇ P(x ⁇ y) } I(X); Y ⁇ Y') 美元, 而如果在编码器中可以找到, 反馈能力是 $C{FSI 的 值。 在两种公式中, 输出进程是 Markov 进程, 且有固定分布。 衍生公式概括了文献中已知的特殊案例, 例如, 国家分布了 {FSI \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年3月28日
Arxiv
0+阅读 · 2021年9月15日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
7+阅读 · 2019年3月28日
Top
微信扫码咨询专知VIP会员