Spiking Neural Networks (SNNs) have shown capabilities of achieving high accuracy under unsupervised settings and low operational power/energy due to their bio-plausible computations. Previous studies identified that DRAM-based off-chip memory accesses dominate the energy consumption of SNN processing. However, state-of-the-art works do not optimize the DRAM energy-per-access, thereby hindering the SNN-based systems from achieving further energy efficiency gains. To substantially reduce the DRAM energy-per-access, an effective solution is to decrease the DRAM supply voltage, but it may lead to errors in DRAM cells (i.e., so-called approximate DRAM). Towards this, we propose \textit{EnforceSNN}, a novel design framework that provides a solution for resilient and energy-efficient SNN inference using reduced-voltage DRAM for embedded systems. The key mechanisms of our EnforceSNN are: (1) employing quantized weights to reduce the DRAM access energy; (2) devising an efficient DRAM mapping policy to minimize the DRAM energy-per-access; (3) analyzing the SNN error tolerance to understand its accuracy profile considering different bit error rate (BER) values; (4) leveraging the information for developing an efficient fault-aware training (FAT) that considers different BER values and bit error locations in DRAM to improve the SNN error tolerance; and (5) developing an algorithm to select the SNN model that offers good trade-offs among accuracy, memory, and energy consumption. The experimental results show that our EnforceSNN maintains the accuracy (i.e., no accuracy loss for BER less-or-equal 10^-3) as compared to the baseline SNN with accurate DRAM, while achieving up to 84.9\% of DRAM energy saving and up to 4.1x speed-up of DRAM data throughput across different network sizes.


翻译:脉冲神经网络(SNN)已经展示了在无监督环境下取得高精度和低功耗/能耗的生物可行的计算能力。之前的研究表明,基于片外 DRAM 的内存访问占据了 SNN 处理的能耗主导地位。然而,最先进的工作没有对 DRAM 的能耗进行优化,从而阻碍了基于 SNN 的系统能够进一步提高能量效率。要大幅度降低 DRAM 能量消耗,有效的解决方案是降低 DRAM 供电电压,但这可能导致 DRAM 单元格的错误(即所谓的近似 DRAM)。为此,我们提出了 EnforceSNN,一种使用降压 DRAM 的新型设计框架,为嵌入式系统提供具有弹性和节能的 SNN 推断解决方案。我们 EnforceSNN 的关键机制包括:(1)使用量化权重来减少 DRAM 访问能量;(2)设计一种高效的 DRAM 映射策略以最小化 DRAM 每次访问的能耗;(3)分析 SNN 的错误容忍性,以了解其在考虑不同的比特错误率(BER)值时的精度概况;(4)利用该信息开发高效的容错训练(FAT),考虑不同的 BER 值和 DRAM 中比特错误的位置,以提高 SNN 的错误容忍度;和(5)开发一种算法,选择 SNN 模型,在准确性、内存和能量消耗之间提供良好的折衷。实验结果表明,我们的 EnforceSNN 在保持精度(即 BER 小于等于 10^-3 时没有精度损失)的同时,与准确 DRAM 的基线 SNN 相比,能够实现多达 84.9% 的 DRAM 能量节省和多达 4.1 倍的 DRAM 数据吞吐量加速。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
令人沮丧的C++性能调试
InfoQ
0+阅读 · 2022年10月24日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
23+阅读 · 2020年9月16日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
相关资讯
令人沮丧的C++性能调试
InfoQ
0+阅读 · 2022年10月24日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员