We propose a nonparametric predictor and a supervised classification based on the regression function estimate of a spatial real variable using k-nearest neighbors method (k-NN). Under some assumptions, we establish almost complete or sure convergence of the proposed estimates which incorporate a spatial proximity between observations. Numerical results on simulated and real fish data illustrate the behavior of the given predictor and classification method.


翻译:我们提出一个非参数预测器,并根据使用 k 近邻方法( k-NN ) 对空间实际变量的回归函数估计进行监管分类。 根据一些假设,我们几乎完全或肯定地将拟议估计数统一起来,其中纳入了观测之间的空间距离。 模拟和实际鱼类数据的数字结果说明了特定预测器和分类方法的行为。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员