How do social networks differ across platforms? How do information networks change over time? Answering questions like these requires us to compare two or more graphs. This task is commonly treated as a measurement problem, but numerical answers give limited insight. Here, we argue that if the goal is to gain understanding, we should treat graph similarity assessment as a description problem instead. We formalize this problem as a model selection task using the Minimum Description Length principle, capturing the similarity of the input graphs in a common model and the differences between them in transformations to individual models. To discover good models, we propose Momo, which breaks the problem into two parts and introduces efficient algorithms for each. Through an extensive set of experiments on a wide range of synthetic and real-world graphs, we confirm that Momo works well in practice.
翻译:社交网络在不同平台之间如何不同? 信息网络如何随着时间变化? 回答这样的问题需要我们比较两个或更多的图表。 这项任务通常被视为一个测量问题, 但数字答案的洞察力有限。 在这里,我们争论说,如果目标是获得理解, 我们应该将图形相似性评估作为描述问题。 我们用最低描述长度原则将这一问题正式确定为一种示范选择任务, 捕捉共同模型中输入图的相似性, 以及它们之间在转换为个体模型方面的差异。 为了发现良好的模型, 我们建议莫莫, 它将问题分为两个部分, 并为每个部分引入高效的算法。 通过一系列广泛的合成和现实世界图实验, 我们确认莫在实践上效果良好。