Two new classes of skew codes over a finite field $\F$ are proposed, called skew convolutional codes and skew trellis codes. These two classes are defined by, respectively, left or right sub-modules over the skew fields of fractions of skew polynomials over $\F$. The skew convolutional codes can be represented as periodic time-varying ordinary convolutional codes. The skew trellis codes are in general nonlinear over $\F$. Every code from both classes has a code trellis and can be decoded by Viterbi or BCJR algorithms.
翻译:提出了两个关于一定字段$\F$的新的Skew代码类别,称为skew convolution 代码和 skew trellis 代码。这两个类别分别由折叠场上的折叠多面体分数的折叠场的左或右小模块来定义。 折叠组合代码可以作为定期时间变化的普通共产代码来表达。 折叠曲代码一般为非线性代码, 超过$\F$。 两类的代码都有一个代码小模块, 可以由 Viterbi 或 BCJR 算法解码 。