Let $G$ be a graph with $n$ vertices and $m$ edges. One of several hierarchies towards the stability number of $G$ is the exact subgraph hierarchy (ESH). On the first level it computes the Lov\'{a}sz theta function $\vartheta(G)$ as semidefinite program (SDP) with a matrix variable of order $n+1$ and $n+m+1$ constraints. On the $k$-th level it adds all exact subgraph constraints (ESC) for subgraphs of order $k$ to the SDP. An ESC ensures that the submatrix of the matrix variable corresponding to the subgraph is in the correct polytope. By including only some ESCs into the SDP the ESH can be exploited computationally. In this paper we introduce a variant of the ESH that computes $\vartheta(G)$ through an SDP with a matrix variable of order $n$ and $m+1$ constraints. We show that it makes sense to include the ESCs into this SDP and introduce the compressed ESH (CESH) analogously to the ESH. Computationally the CESH seems favorable as the SDP is smaller. However, we prove that the bounds based on the ESH are always at least as good as those of the CESH. In computational experiments sometimes they are significantly better. We also introduce scaled ESCs (SESCs), which are a more natural way to include exactness constraints into the smaller SDP and we prove that including an SESC is equivalent to including an ESC for every subgraph.


翻译:$G 是一个以美元为顶端和美元+美元+1美元限制的图表。 在美元水平上,它增加了所有精确的分层限制(ESC), 用于排序的分层值为$G美元。 精确的分层等级(ESH) 之一就是精确的分层等级。 在第一个层次上,它计算Lov\\\ {a}sz sta 函数Lovtheta(G) 为半确定性(SDP), 矩阵变量为n+1美元和n+m+1美元。 在美元水平上, 它增加了所有精确的分层限制(ESC) 用于排序的分层限制(ESC ) 美元到 SDP 的分层值( ESCF) 。 在一个比例上, ESCH 对应的矩阵变量的子矩阵值值在正确的分级值上, 将 ESCH 的子矩阵值值(ESH ) 更小的子值(ESCE) 也显示将ESC 的精度纳入到SD 的精度。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
专知会员服务
18+阅读 · 2020年9月6日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Many Proxy Controls
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
专知会员服务
18+阅读 · 2020年9月6日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员