Adversarial examples have been found for various deep as well as shallow learning models, and have at various times been suggested to be either fixable model-specific bugs, or else inherent dataset feature, or both. We present theoretical and empirical results to show that adversarial examples are approximate discontinuities resulting from models that specify approximately bijective maps $f: \Bbb R^n \to \Bbb R^m; n \neq m$ over their inputs, and this discontinuity follows from the topological invariance of dimension.


翻译:对抗性样本已被发现针对各种深度和浅层学习模型,对抗性样本有时被认为是可修复的模型特定错误,也可能是内在的数据集特征,或两者都有。我们提出理论和实证结果表明,对抗性样本是从指定了近似双射映射 $f: \Bbb R^n \to \Bbb R^m; n \neq m$ 的模型中产生的近似不连续性,这种不连续性源于维度的拓扑不变性。

0
下载
关闭预览

相关内容

【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
26+阅读 · 2020年10月9日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员