Novel Monte Carlo methods to generate samples from a target distribution, such as a posterior from a Bayesian analysis, have rapidly expanded in the past decade. Algorithms based on Piecewise Deterministic Markov Processes (PDMPs), non-reversible continuous-time processes, are developing into their own research branch, thanks their important properties (e.g., correct invariant distribution, ergodicity, and super-efficiency). Nevertheless, practice has not caught up with the theory in this field, and the use of PDMPs to solve applied problems is not widespread. This might be due, firstly, to several implementational challenges that PDMP-based samplers present with and, secondly, to the lack of papers that showcase the methods and implementations in applied settings. Here, we address both these issues using one of the most promising PDMPs, the Zig-Zag sampler, as an archetypal example. After an explanation of the key elements of the Zig-Zag sampler, its implementation challenges are exposed and addressed. Specifically, the formulation of an algorithm that draws samples from a target distribution of interest is provided. Notably, the only requirement of the algorithm is a closed-form function to evaluate the target density of interest, and, unlike previous implementations, no further information on the target is needed. The performance of the algorithm is evaluated against another gradient-based sampler, and it is proven to be competitive, in simulation and real-data settings. Lastly, we demonstrate that the super-efficiency property, i.e. the ability to draw one independent sample at a lesser cost than evaluating the likelihood of all the data, can be obtained in practice.


翻译:从目标分布中采集样本的方法,如巴伊西亚分析的后端分析,在过去十年中迅速扩展。基于PDMP取样员的PDMP进程(PDMPs),不可逆的连续时间进程,不可逆的连续时间进程,正在发展成自己的研究分支,这要归功于它们的重要特性(例如,正确的不变化分布、偏向性和超效率)。然而,实践没有跟上该领域的理论,使用PDMPs来解决应用问题的做法并不普遍。这首先可能是由于基于PDMP抽样员的PDMP进程(PDMPs)的一些执行背景挑战,其次是因为缺乏展示应用环境中的方法和实施情况的文件。在这里,我们用最有前途的PDMPs、Zig-Zag取样员之一,作为典型例子来解决这些问题。在解释Zig-Zag取样员的关键要素后,其实施挑战并不普遍。 具体地说,基于PDMPPDMP的样本采集到的实施成本,其目标的精确度的精确性能度的设定是从先前的精确性能到现在的精确性能的精确性数据。在评估中,对一个目标的精确性值的精确性能的精确性能的计算是另一个。我们所提供的利益。在评估中可以进一步解释。在评估中可以证明。在对一个目标的精确性能上的精确性能的计算中提供。我们提供。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
57+阅读 · 2022年1月5日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员