We present a novel surface convolution operator acting on vector fields that is based on a simple observation: instead of combining neighboring features with respect to a single coordinate parameterization defined at a given point, we have every neighbor describe the position of the point within its own coordinate frame. This formulation combines intrinsic spatial convolution with parallel transport in a scattering operation while placing no constraints on the filters themselves, providing a definition of convolution that commutes with the action of isometries, has increased descriptive potential, and is robust to noise and other nuisance factors. The result is a rich notion of convolution which we call field convolution, well-suited for CNNs on surfaces. Field convolutions are flexible, straight-forward to incorporate into surface learning frameworks, and their highly discriminating nature has cascading effects throughout the learning pipeline. Using simple networks constructed from residual field convolution blocks, we achieve state-of-the-art results on standard benchmarks in fundamental geometry processing tasks, such as shape classification, segmentation, correspondence, and sparse matching.


翻译:在矢量场上,我们展示了一个基于简单观察的新颖的地表熔化操作者:我们没有在某一点定义的单一坐标参数化方面将相邻特征结合起来,而是让每个邻居在自己的坐标框内描述点的位置。这种配方结合了在散射操作中的内在空间熔化和平行运输,而没有限制过滤器本身,提供了随异粒体行动通航、描述潜力增加、对噪音和其他扰动因素具有强力的演化定义。结果是一个丰富的演化概念,我们称之为现场演化,完全适合有线电视新闻网的表面。实地演化是灵活的,直向前的,可以纳入地表学习框架,其高度区别的性质在整个学习管道中具有连锁效应。我们利用残余的场熔化区块构建的简单网络,在基本几何处理任务的标准基准(如形状分类、分解、对等)上取得最先进的结果。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
专知会员服务
31+阅读 · 2021年6月12日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员