While today's video recognition systems parse snapshots or short clips accurately, they cannot connect the dots and reason across a longer range of time yet. Most existing video architectures can only process <5 seconds of a video without hitting the computation or memory bottlenecks. In this paper, we propose a new strategy to overcome this challenge. Instead of trying to process more frames at once like most existing methods, we propose to process videos in an online fashion and cache "memory" at each iteration. Through the memory, the model can reference prior context for long-term modeling, with only a marginal cost. Based on this idea, we build MeMViT, a Memory-augmented Multiscale Vision Transformer, that has a temporal support 30x longer than existing models with only 4.5% more compute; traditional methods need >3,000% more compute to do the same. On a wide range of settings, the increased temporal support enabled by MeMViT brings large gains in recognition accuracy consistently. MeMViT obtains state-of-the-art results on the AVA, EPIC-Kitchens-100 action classification, and action anticipation datasets. Code and models will be made publicly available.
翻译:虽然今天的视频识别系统精确地分析短片或短片, 它们无法在更长的时间范围内将点和理性连接起来。 大多数现有的视频结构只能处理小于5秒的视频, 而不触动计算或内存瓶颈。 在本文中, 我们提出了克服这一挑战的新战略 。 我们建议, 不再试图像大多数现有方法那样同时处理更多框架, 而是在每次循环中以在线方式处理视频, 并在每次循环中缓存“ 模拟” 。 通过记忆, 模型可以参考长期建模的先前背景, 仅花费一小笔费用。 基于这个想法, 我们建造MMMMVi, 是一个内存放大的多尺度图像变异器, 其时间支持比现有模型长30x年, 且配置率只有4.5%; 传统方法需要 > 3,000% 来做同样的操作 。 在广泛的环境中, MeMMVIT 增强的时间支持能持续地获得大量确认准确性收益。 MeMViT 将获得AVA、 EPIC- Kitchens- 100 动作模型和预期动作模型。