Natural language interfaces (NLIs) have become a prevalent medium for conducting visual data analysis, enabling people with varying levels of analytic experience to ask questions of and interact with their data. While there have been notable improvements with respect to language understanding capabilities in these systems, fundamental user experience and interaction challenges including the lack of analytic guidance (i.e., knowing what aspects of the data to consider) and discoverability of natural language input (i.e., knowing how to phrase input utterances) persist. To address these challenges, we investigate utterance recommendations that contextually provide analytic guidance by suggesting data features (e.g., attributes, values, trends) while implicitly making users aware of the types of phrasings that an NLI supports. We present SNOWY, a prototype system that generates and recommends utterances for visual analysis based on a combination of data interestingness metrics and language pragmatics. Through a preliminary user study, we found that utterance recommendations in SNOWY support conversational visual analysis by guiding the participants' analytic workflows and making them aware of the system's language interpretation capabilities. Based on the feedback and observations from the study, we discuss potential implications and considerations for incorporating recommendations in future NLIs for visual analysis.
翻译:自然语言界面(NLIs)已成为进行视觉数据分析的常用媒介,使具有不同程度分析经验的人能够就数据提出问题并与数据互动。虽然在这些系统中语言理解能力、基本用户经验和互动挑战方面有了显著的改进,包括缺乏分析指导(即了解需要考虑的数据的哪些方面)和自然语言输入的可发现性(即知道如何用文字表述输入的话语)以及自然语言输入的可发现性(即知道如何用文字表述输入的话语句)持续存在。为了应对这些挑战,我们调查了表达的建议,这些建议在背景上提供了分析性指导,建议了数据特征(例如属性、价值、趋势),同时隐含地使用户了解了NLI所支持的语句类型。我们介绍了SNOWY这个原型系统,根据数据有趣度指标和实用性语言的组合,生成并建议进行视觉分析。通过初步用户研究,我们发现SNOWY的发音建议支持对话性视觉分析,指导了参与者的分析性工作流程,并使他们了解未来语言分析中可能涉及的视觉分析。